An Introduction to the Clocked Lambda Calculus

نویسندگان

  • Jörg Endrullis
  • Dimitri Hendriks
  • Jan Willem Klop
  • Andrew Polonsky
چکیده

We give a brief introduction to the clocked λ-calculus, an extension of the classical λ-calculus with a unary symbol τ used to witness the β-steps. In contrast to the classical λ-calculus, this extension is infinitary strongly normalising and infinitary confluent. The infinitary normal forms are enriched Lévy–Longo Trees, which we call clocked Lévy–Longo Trees. 1998 ACM Subject Classification D.1.1, D.3.1, F.4.1, F.4.2, I.1.1, I.1.3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminating Lambda-Terms Using Clocked Boehm Trees

As observed by Intrigila [16], there are hardly techniques available in the λ-calculus to prove that two λ-terms are not β-convertible. Techniques employing the usual Böhm Trees are inadequate when we deal with terms having the same Böhm Tree (BT). This is the case in particular for fixed point combinators, as they all have the same BT. Another interesting equation, whose consideration was sugg...

متن کامل

Highlights in infinitary rewriting and lambda calculus

We present some highlights from the emerging theory of infinitary rewriting, both for first-order term rewriting systems and λ-calculus. In the first section we introduce the framework of infinitary rewriting for first-order rewrite systems, so without bound variables. We present a recent observation concerning the continuity of infinitary rewriting. In the second section we present an excursio...

متن کامل

Modular Construction of Fixed Point Combinators and Clocked Boehm Trees

Fixed point combinators (and their generalization: looping combinators) are classic notions belonging to the heart of λ-calculus and logic. We start with an exploration of the structure of fixed point combinators (fpc’s), vastly generalizing the well-known fact that if Y is an fpc, Y (SI) is again an fpc, generating the Böhm sequence of fpc’s. Using the infinitary λ-calculus we devise infinitel...

متن کامل

On graphic lambda calculus and the dual of the graphic beta move

This is a short description of graphic lambda calculus, with special emphasis on a duality suggested by the two different appearances of knot diagrams, in lambda calculus and emergent algebra sectors of the graphic lambda calculus respectively. This duality leads to the introduction of the dual of the graphic beta move. While the graphic beta move corresponds to beta reduction in untyped lambda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1405.7500  شماره 

صفحات  -

تاریخ انتشار 2014